

Life Science for Sustainability: Plants as Production Factories for Recombinant Proteins

Anatoli Giritch

Nomad Bioscience GmbH, Halle (Saale), Germany

Fifth International Jean Monnet Summer School National University of Food Technologies, Kyiv, Ukraine June 10, 2021

1

Global Population and Sustainable Development

Needs and challenges

2.6 Billion

Sustainable development: balancing local and global efforts to meet human needs without destroying or degrading the natural environment.

- ✓ Political
- ✓ Cultural
- ✓ Technological

Source: HYDE (2016) & UN (2019)

Biotechnology in the Modern World

https://warriorsofmyth.fandom.com/wiki/Wollmilchsau?file=Eierlegende_wollmilchsau.jpg

Die eierlegende Wollmilchsau (egg-laying wool-milk-sow) **Biotechnology** is technology that utilizes biological systems, living organisms or parts of this to create various products or for environmental management

- ✓ Health
- ✓ Food
- ✓ Agriculture
- ✓ Industry
- ✓ Environment

Native vs Recombinant Proteins

- Proteins (polypeptides) = natural biopolymers composed of amino acids, 16% human body
- Cellular functions: structural, enzymatic, transport, regulatory, defence etc.
- Use: nutritional, medicine (vaccines, drugs, diagnostics), food industry, fuel industry etc.

- Recombinant proteins are produced from recombinant DNA using biotechnological methods
- Recombinant DNA is a DNA molecule created in laboratory using methods of genetic recombination which combines genetic material from different sources
- Recombinant proteins can be the copies of native proteins or novel molecules not existing in the nature
- Various production hosts: bacteria, fungi, insect cells, mammalian cells, plants

Back to the History

- 1972 The idea for the gene cloning technique first arose at a scientific meeting on plasmids in Honolulu
 - 1973 and 1974 Stanley Cohen, Herbert Boyer, and colleagues at Stanford and UC San Francisco published first three landmark papers on recombinant DNA

Time Magazine-March 9, 1981

- 1976 Genentech, incorporated by Herbert Boyer and venture capitalist Robert Swanson, was the first company founded on the basis of recombinant DNA technology
- Genentech produced recombinant human insulin in E. coli
- Humulin (recombinant human insulin) was approved by FDA in 1982
- Humulin was the first recombinant pharmaceutical approved for use
- Production and commercialization by Eli Lilly up to day

Production platforms

Plant-Made Recombinant Proteins: Approved & in Development

Several products advanced:

- Glucocerebrosidase/Protalix, approved
- Anti-caries Mab/Planet, approved
- Fabry Disease Therapy/Protalix, clinical studies completed
- Cystic Fibrosis Therapy/Protalix, Phase II
- Lactoferrin/Ventria, Phase II completed
- Anti-HIV Mab PharmaPlanta, Phase I
- Antimicrobial Proteins/Nomad, GRAS approved
- Thaumatin/Nomad, GRAS approved
- NHL Vaccine/Icon-Bayer, Phase I completed
- Influenza Vaccine/Medicago, approved
- Anti-Ebola Mab, Mapp, Phase I-II
- COVID-19 Vaccine/Kentucky BioProcessing, Phase II
- COVID-19 Vaccine/Medicago, Phase III

SARS-Cov-2 Virus

Viris-Like Particle (VLP vaccine), Medicago

Epitope vaccine (TMV scaffold), Kentucky BioProcessing

Nomad Bioscience GmbH

- Plant Biotech Company, founded in 2008 in Halle (Saale), Germany
- Subsidiary: Nomads UAB, Vilnius, Lithuania
- Formerly known as Icon Genetics GmbH (since 1999)
- Research & Development (R&D)
- Developed plant-based expression systems for recombinant proteins: magnICON[®] and NOMADIC[®]
- Main focus: pharmaceuticals, food safety, agronomic traits, biomaterials

Yuri Gleba

GENETICS

magnICON® Expression Technology

Virus (TMV or PVX)

Agrobacterium tumefaciens

Production host Nicotiana benthamiana

magnICON[®] Expression System Vacuum Infiltration

magnICON[®] & NOMADIC[®] Expression Technologies

transfection using vacuum infiltration ideal for high-cost products, e.g. **biopharmaceuticals**, vaccines

ethanol-inducible amplification ideal for high-volume products, e.g. **biomaterials, antimicrobials**

transfection using spraying ideal for low-cost products, e.g. industrial enzymes, agronomic traits ICON

cGMP Certified Facility in Halle, Germany

GENETICS

magnICON[®]: Platform Versatility

Origin of Virology

 Dmitri losifovich Ivanovsky (1864–1920) son of an impoverished landowner from Kherson region (Ukraine)

Dmitri Ivanovsky in his young years (from Lechevalier H., Dmitri Iosifovich Ivanovski, Bacteriol Rev. 1972, 36: 2, 135– 145).

- 1886 Adolf Mayer described mosaic disease of tobacco
- 1887- Ivanovsky studies at St. Petersburg University, investigates tobacco disease ('ryabucha') in South Ukraine and Bessarabia
- 1890 The same studies in Crimea
- 1892 Ivanovsky published the paper describing extremely small pathogen passing through porcelain filters that retain bacteria
- 1892 Defended his thesis at St. Volodymyr University of Kyiv
- 1897 Martinus Beijerinck named the new pathogen virus

Tobacco Mosaic Disease (http://ephytia.inra.fr/en/C/10885/Tobacco-Main-Symptoms)

Taras Shevchenko National University of Kyiv, former St. Volodymyr University of Kyiv

Griffithsin against SARS-CoV-2

Control

kDa

34 26

17

10

M 1

Griffithsia

Lectin Griffithsin

Monomer: 122 aa; 12.8 kDa Functional as dimer

ICON

Mapp Biopharmaceutical: Ebola Immunotherapy

GENETICS

Pan-Drug Resistant Bacteria?

CYBERSECURITY PASSWORD PSYCHOLOGY The human fallibility factor in cybercrime PAGE 164

THE 14-DAY QUESTION Are research guidelines being overtaken by events? PAGES 169, 192 & 251

HUMAN EMBRYOLOGY

ATMOSPHERIC SCIENCE ECHO OF AN ANCIENT AIR Micrometeorites record high-level Archaean oxygen PAGES 104 & 235 **D NATURE.COM/NATURE** 12 May 2016 £10

Vol. 533, No. 7602

Bacteriocins: Antimicrobials for Gram-negatives

Bacteriocins - ribosomally synthesized antimicrobial protein produced by bacteria

to inhibit growth of similar or closely related bacterial strains

Colicins – bacteriocins from *E. coli*

Salmocins – bacteriocins from Salmonella

Klein *et al.,* Biochem. J., 2016 473 (18) 2799-2812

Bacteriophage Endolysins: Antimicrobials for Gram-Positives

Hydrolytic enzymes secreted by bacteriophages to cleave the host cell wall during the final stage of lytic cycle

		-	_
N-	Catalytic domain	Cell wall binding domain	-C

Antimicrobial Proteins vs. Antibiotics

Compounds	Antibiotics	Destaviasius	
Features	Antibiotics	Bacteriocins	Phage endolysins
Identity	Small molecule	Protein/peptide	Protein
Synthesis	Secondary metabolite	Ribosomal	Ribosomal
Activity	Varying spectrum	Narrow spectrum	Narrow spectrum
Mode of action	Intracellular targets and cell membrane	Pore formation, DNase/RNase activity, inhibition of cell wall synthesis	Cell wall degradation
Environmental Stability	Stable	Easily degradable	Easily degradable

Foodborne Pathogens

Bacterial pathogens:

Gram-negative Escherichia coli Salmonella spp. Klebsiella spp. Shigella spp. Campylobacter spp. Yersinia spp. Vibrio spp.

Gram-positive

Clostridium spp. Listeria monocytogenes Bacillus cereus Staphylococcus aureus

Viral pathogens:

Norovirus Hepatitis A SARS Rotaviruses Newly emerging viruses

Parasitic pathogens:

Nematodes -Ascaris -Trichinella Platyhelmints Protozoa -Cryptosporidia -Toxoplasma

Newell DG et al 2010 Int J Foood Microb 139

Diarrheal diseases, USA, 2000-2008

Infections: Norovirus (58%) Salmonella spp. (11%) Clostridium perfringens (10%) Campylobacter spp. (9%) Escherichia coli (1%)

Hospitalizations: Salmonella spp. (35%) Norovirus (26%) Campylobacter spp. (15%) Toxoplasma gondii (8%) Escherichia coli (2%)

Deaths:

Salmonella spp. (28%) Toxoplasma gondii (24%) Listeria monocytogenes (19%) Norovirus (11%) Escherichia coli (1%)

Scallan E et al 2011 Emerg Infect Dis

Bacteriocin Nisin as a Food Preservative

NISIN: polycyclic antibacterial peptide produced by Lactococcus lactis

- 34 aa peptide
- Nisin A and Nisin Z (more soluble)
- Non-toxic, heat stable, sensitive to digestive proteases
- Produced since 1950s
- approved by FDA and EFSA as a food preservative
- GRAS status in USA, EU food additive list: E234
- Gram+ bacteria: LAB, Listeria, Staphylococcus, Clostridium

Nisin A. MW=3.4 kDa, 34 aa

Dha, dehydroalanine; Dhb, dehydrobutyrine; Ala-S-Ala, mesolanthionine; Abu-S-Ala, β -methyllanthionine.

Han al. (2017) Acta Biomaterialia 53, 242-249

Effect of Colicin Cocktail on *E. coli* ('Big Seven') on Fresh Pork Steak Meat

Activity of Salmocin SalE1b on Beef, Tuna and Whole Egg

5 mg/g SalE1b

Lysis of *Clostridium perfringens* cells with plant-made bacteriophage lysin

Clostridium perfringens NCTC8237 cells treated with plant-made bacteriophage lysin Psm (3-18 min post treatment). Video by Dr. Vaiva Kazanaviciute, UAB Nomads.

Natural Thaumatin

- Natural source: fruit arils of *Thaumatococcus daniellii*
- Natural source: only rainforests of Africa
- Natural source: mixture of Thaumatins I, II, a and b
- 22 kDa protein; 207 amino acids; 8 disulphide bonds; not glycosylated; water soluble; resistant to heating; stable under acidic pH; easily purified
- 2000-3000 times sweeter than sucrose on w/w basis
- Sweetness with slow onset, lingering sweetness, licorice aftertaste in the natural product
- Introduced in early 70ies by Tate & Lyle
- Approved in EU (E957), in Japan, Israel as sweetener, as flavour modifier in USA (FEMA GRAS 3732)

Thaumatin II: 50% Sugar Reduction Case

At 5 ppm, 5 mg of Thaumatin II is equivalent of 50 g sugar meaning that at this conc At \$2-5 per gram COGs, the 1 kg sugar entration, Thaumatin II is 10,000 times sweeter than sugar equivalent will cost \$0.2—0.5, similar to or lower than the cost of sugar

Regulatory Status

Nomad`s bacteriocins - GRAS submissions/acceptances*

Product/Origin	GRAS GRN	Submission date	Response date
Colicins/Escherichia coli	000593	07.2015	12.2015/FDA
Colicins/E.coli	000676	11.2016	05.2017/FDA 01.2017/USDA
<u>Salmocins/</u> Salmonella enterica	000824	11.2018	21.10 2019/FDA
<u>Endolysins,</u> <u>Clostridium phages</u>	000802	07.2018	04.2019/FDA
Nicotiana as a GRAS host	000775	04.2018	10.2018/FDA
*All bacteriocins are 'food processing aids'. Colicins are also listed in USDA/FSIS Directive 7	/120.1		

- GRAS ('Generally Recognized As Safe') is regulatory approval path for food additives in USA
- Nomad has received seven GRAS regulatory approvals, with one submission pending, in the USA
- All bacteriocins approved as food processing aids (no need for labelling)

Nomad's thaumatins - GRAS submissions/acceptances

Product	GRAS GRN	Submission date	Responce date
Thaumatin sweeteners	000738	10.2017	04.2018/FDA
Thaumatin 2 Sweetener	000910	02.2020	09.2020
Thaumatin 2 taste modifier	000920	04.2020	pending

Thank you for attention!

